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The study of droplet dynamics is very important to understand the mechanism of heat, mass, and 

momentum transfer in two phases. One approach to studying this phenomenon is through 

numerical simulation. The front tracking method is one of the techniques often used in numerical 

simulation of droplets to handle phase interactions in multiphase flows. The characteristics of 

droplets when they collide with surfaces with different density values are the subject of this study. 

The modeling used in this study is an interface diffusion approach using 2 types of fluids that have 

different properties. The domain used is Square Box-Staggered Grid. The software used is MATLAB 

R2024a. The results of the study indicate that the value of density ratio has a significant effect on the 

spreading factor, apex height, spreading velocity and pressure. 
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1. Introduction 

Droplet is a two-phase phenomenon that is widely found in various applications in science and 

industry such as microfluidics, spray cooling, Fuel Combustion, and meteorology. The study of 

droplet dynamics is very important to understand the mechanism of heat, mass, and momentum 

transfer in two phases. One approach to studying this phenomenon is through numerical simulation, 

which allows in-depth analysis of the parameters that affect droplet behavior without the limitations 

of laboratory experiments [1]. In addition, other methods such as Direct Numerical Simulation (DNS) 

are also often used to understand droplet dynamics under various conditions, including evaporation 

and condensation [2]. 

Recent studies have addressed the effects of surface heterogeneity on droplet dynamics using 

numerical modeling. This study showed that super hydrophobic surfaces with certain heterogeneity 

cause droplets to experience anisotropic spreading and directional reflection [3]. This study shows 

that numerical modeling can help understand how surface properties affect droplet characteristics. 

Numerical simulations were also used to study the droplet velocity in constricted microchannel. 

Factors such as relative viscosity, capillary number and channel constriction ratio significantly affect 
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the droplet velocity and control in these systems [4]. This understanding is essential in building of 

microfluidic instruments for biomedical and analytical chemistry applications. 

Other studies conducted to explore the understanding of droplet dynamics focused on the 

interaction of droplets with magnetic fields using Boundary Element Method (BEM) simulations [5] 

and interactions between molecules in droplet systems based on molecular dynamics (MD) [6] . Both 

approaches have succeeded in providing a deep understanding of the characteristics of droplet 

dynamics and phenomena that occur in their applications. 

Finite Volume Method (FVM) and Front Tracking are two techniques that are often used in 

numerical simulation of droplets to handle phase interactions in multiphase flows [7]–[9]. The Finite 

Volume Method allows solving conservation equations with a high degree of accuracy on a discrete 

grid, while the Front Tracking method is used to track the droplet interface explicitly against droplet 

deformation during spreading, breaking, or coalescence processes [9]. The combination of these two 

methods has been applied in studies of droplet impact on surfaces with varying degrees of wettability 

and heterogeneity [10]–[12], providing a deeper understanding of the physical mechanisms that 

occur at the microscopic scale. 

This study is a development of what has been done by the author by investigating the 

characteristics of the density field [12], [13]. The results of this study have been validated with the 

research of Tryggvason 2012 [9]and compared with the results of the research of Wu et al. 2015 

[14]and Endang et al. 2020 [11]. This goal of the study is to examine the characteristics of droplets 

when hitting surfaces with varying density values. The results of this study showed that the ratio of 

density had a significant consequences for the spreading factor, apex height, spreading speed and 

pressure. 

2. Materials and Methods  

2.1. Mathematical Modeling and Governing Equations 

The modeling used in this study, the interface diffusion approach uses 2 types of fluids that have 

opposing properties. The simplification of the case can be described as a free-falling droplet hitting a 

surface that is in another fluid. This study is a development that researchers have done in 2018 and 

2024. Overall, the present study is intended to determine the implications of surface tension 

involvement and variations in density ratio on spreading factor, apex height, spreading velocity and 

pressure. The fundamental formulas used are the continuity equation and Navier-Stokes for 

incompressible and unsteady cases. Droplet impacting the surface is modeled with the condition 

(dd,vo , θ) = (0.2 mm, 0.66 m/s, 90 o ). The function of time is expressed by the dimensionless number 

t* = (tv o /dd). 

 
Figure 1. Scheme of droplets hitting a surface [12] 
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2.1.1. Computational Domain and Boundary Conditions 

This study uses a box domain with length and width Lx and Ly, where the velocity is the 

boundary and the pressure is in the center of the domain in the control volume approach. Figure 2. 

a) shows the Staggered-Grid computational domain where the horizontal velocity is located at the 

left and right boundaries while the vertical velocity is at the upper and lower boundaries of the 

control volume [9].  

 

 

 

 

 

 

 

 

 

 

   a)               b) 

Figure 2. a) Computational domain in staggered-grid notation b) Boundary conditions 

To start the solution step, first determine the appropriate boundary conditions to facilitate the 

solution. Since the boundary and the center of the control volume are coinciding, we can adjust the 

velocity to the appropriate value. From figure 2. b) it is known that the Interpolation between the 

wall velocity and the known ghost velocity will give a value for the velocity in the domain. The 

equation on the boundary wall follows the following equation. 
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Where ui,1 is the phantom velocity and uwall is the tangential velocity at the wall. As long as the wall 

velocity and the velocity inside the domain, ui,2, are known, we can quickly determine the ghost 

velocity. 

2.1.2. Governing Equations 

The governing equations used in this study are the continuity and Navier-Stokes equations. The 

equations used for the case of incompressible flow do not change and two-dimensional unsteady 

flow, so the governing equations are presented as follows,  
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Where, the velocity in the x and y directions are represented by notation of u and v, p represents the 

value of pressure, 𝜌is the density and 𝜈is the viscosity value. 

2.2. Numerical Algorithms and Discretization of Governing Equations 

 The governing equations are solved initially by neglecting the pressure value to simplify the 

problem. The governing equations are discretized using the fractional-step method which is done 

implicitly for each component of the x- and y-axis directions. The equations of the x- and y-axis 

directions are written in the following equations, 
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2.2.1. Discretization of velocities in the x and y directions 

Discretization of the x and y axis velocities is carried out in 2 stages using the fractional-step 

method of the Thomas algorithm. 

First order fractional-step formulation as follow [15], 
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Second order fractional-step formulation as follow [16], [17], 
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The linearization below is used to obtain an efficient fractional-step method solution. 
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Next, substitute these equations into equations (8) – (11) to obtain the instantaneous velocity 

value 
*,*,ˆ,ˆ vuvu . In the first step, the instantaneous velocity value is obtained vu ˆ,ˆ using the FDM 

finite difference method as follows, 
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Next, for the second half-step, the transient velocity value is obtained from the finite difference 

approach 
*,* vu as follows,  
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The transient and transient velocity equations above form a tridiagonal system which is solved by 

the Thomas method TDMA algorithm. The boundary values of the velocities 
*,*,ˆ,ˆ vuvu are inserted 

into the tridiagonal system equations (see Roache 1976, Peyret and Taylor 2012, Lemos 1994) for a more 

detailed description [18]–[20]. 

2.2.2. Pressure Correction Equation [9] 
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2.2.3. Front-Tracking Method and Surface Tension 

Front-Tracking method is a method used in tracking different fluid interfaces. There are 2 steps in 

the front tracking method, namely the first is moving the interface and constructing the density field. 

Generally, the interface is structured by adding and deleting points when the interface begins to form. 

For 2-D flow, it is relatively easier to create the data structure. Here is the use of a simple arrangement 

of points where there is an interface by marking its coordinates. 

 
Figure 3. Marker points used to mark the interface between two fluids 
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Surface tension is one of the factors that determine the results of the modeling. Surface tension 

works only at the interface of two different fluids. To enable us to build the force per unit volume on a 

fixed grid, we must determine the total force acting on the interface portion using the following 

equation, 
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Where surface tension is denoted by f ,  is the coefficient of surface tension and t is the tangent to the 

surface. 

 
Figure 4. Surface tension at a confined interface segment. 

2.2.4. Numeric Code (MATLAB) 

Discretization of the governing equations described above is interpreted into code or script using 

MATLAB R2024a program with license number 41245703. With variations in density values, this script 

is run to simulate the motion of droplets when falling and hitting the surface. The script used is a 

development and modification of an existing script, where Tryggvason 2012 [9] uses an explicit scheme 

to solve the momentum equation while this study uses an implicit scheme. 

3. Results 

The phenomenon of a single droplet falling freely until it hits a solid surface is modeled in this 

study using Finite Volume Method with algorithmic equation solving or using an implicit scheme. 

This study is a continuation of what researchers have done in 2018 and 2024 [12], [13]. The focus of 

this study is studying how the density ratio affects the spreading factor, apex height, spreading 

velocity and pressure distribution in the droplet. This modeling has been validated with the modeling 

developed by Tryggvason 2012 [9]which uses an explicit scheme in solving the governing equation 

algorithm. Referring to the article, it is obtained that the modeling developed by these two studies is 

in accordance with each other. 

Table 1. shows in detail the variation of single droplet phenomena in this study. The variation 

of the density ratio (ρ * =ρd /ρs) was carried out to obtain more in-depth results regarding how 

variations in density affect the properties of droplet movements striking a surface. 

Table 1. Variations of single droplet modeling. 

Cases Grid Size 
Density Ratio ( 

ρd / ρs ) 

Change in 

Time ( Δt ) s 

1 164 x 164 20 125x10-5 

2 164 x 164 30 125x10-6 

3 164 x 164 50 125x10-6 

4 164 x 164 70 125x10-6 

5 164 x 164 80 125x10-7 

6 164 x 164 100 125x10-7 
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3.1. Spreading Factor 

The non-dimensional diameter is represented by the spreading diameter at a certain time 

divided by the initial diameter (D/do). The dimensionless time is represented by t* = (tv o /d d ). The 

droplet diameter fluctuates and becomes stable after t ∗ = 1.3. In general, the pattern of droplet 

diameter changes when hitting the surface for each case has the same tendency. The largest spreading 

diameter is achieved sequentially from ρ * = 100 to ρ * = 20 at t = 0.618 s. The Spreading Factor value 

for each case is shown in the following figure 5. and table 2. 

Table 2. Spreading diameter in mm units for each variation of density ratio. 

Time (s) ρ * = 20 ρ * = 30 ρ * = 50 ρ * = 70 ρ * = 80 ρ * = 100 

0.01 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 

0.453 0.0024 0.0061 0.0061 0.0064 0.0067 0.0079 

0.618 0.0062 0.0065 0.0065 0.0073 0.0091 0.0098 

1.03 0.0026 0.0029 0.0029 0.0061 0.0065 0.0069 

2.02 0.0022 0.0024 0.0024 0.0025 0.0025 0.0028 

 

 

Figure 5. Non dimensional diameter spreading factor in relation to (tvo /dd) 

3.2. Apex Height 

The ratio of the droplet height value at a certain t to the initial droplet diameter is defined as the 

Apex Height. Non-dimensional time is represented by t* = (tvo /dd). Figure 6. and Table 3 show a 

significant decrease in droplet height when the droplet hits a solid surface caused by the impact 

velocity and until the droplet reaches a minimum height. The increasing value of the density ratio 

decreases the minimum droplet height. The minimum droplet height in the apex value for cases with 

density ratios of 30, 80 and 100 are respectively 0.26, 0.21 and 0.18. 

3.3. Spreading Velocity 

The spreading velocity is obtained from the calculation of the change in the droplet spreading 

diameter (ΔDs) divided by the change in time from the initial position to a certain position (Δt). The 

spreading velocity of the droplet when it hits the surface is shown in Figure 6. The pattern of changes 

in spreading velocity has the same tendency for each case. The maximum spreading velocity occurs 

when t * = 0.453 for each variation of the density ratio ρ*. From Figure 7, it is known that the greater 

the density ratio, the higher the spreading velocity value. 
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Table 3. Non-dimensional Apex Height conditions ρ * = 30, 80 and 100. 

Time (s) ρ * =30 ρ * =80 ρ * =100 

0.01 0.95 0.95 0.95 

0.453 0.35 0.31 0.27 

0.618 0.26 0.21 0.18 

1.03 0.65 0.55 0.55 

2.02 0.55 0.47 0.43 

0.01 0.95 0.95 0.95 

 

 
Figure 6. Non-dimensional diameter apex height in relation to (tvo /dd) 

 

Figure 7. Non-dimensional diameter spreading velocity as a function of (tvo /dd) 

3.4. Distribution of Pressure Inside Droplet when Hitting a Surface 

Table 4 shows the pattern of pressure changes inside the droplet when it hits the surface over 

time for the density ratio ρ * = 100. The function of time is represented by the non-dimensional value 

t * = (tvo/dd) and the pressure is represented by the non-dimensional value p * = (p/ρ.g.dd). The droplet 

hits the surface at time t ∗ = 0.37. At this condition, there is a significant pressure change due to the 

collision. A region with high pressure is seen around the collision point between the droplet and the 
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solid surface [21]. The pressure spreads radially along the surface, moving towards and away from 

the edge until the pressure decreases until the droplet experiences a stable condition. 

 
Figure 8. Pressure change as a function of time for a density ratio of 100. 

As can be seen from Figure 8, the pressure at t ∗ = 0 − 0.4 first increases as the droplet moves 

downward. At t ∗ = 0.4 − 0.5, there is a significant increase in pressure. This indicates that the droplet 

experiences a spreading phenomenon. Then the pressure decreases until the droplet experiences a 

stable condition after t ∗ = 0.5. 

3.5. Comparison to Previous Research 

Figure 9. shows a comparison of the spread factor data in this study with those of Wu et al. (2015) 

and Endang et al. (2020). When hitting the surface, the droplet diameter gradually declines until it 

reaches a steady state after increasing noticeably to its maximume value. Overall, the droplet 

movement pattern in the dimensionless spreading factor value is in accordance with the results of 

the studies of Wu et al. (2015) and Endang et al. (2020). There is a difference in the time of the 

maximum spread factor because the density ratio between the droplet and the surrounding fluid is 

different for each study. 

 
Figure 9. Comparison of the Spread Factor of this study (ρ* = 80, ρ* = 100) with data from Wu et al. 

(2015) [14]and Endang et al. (2020) [11]. 
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Table 4. Non-dimensional Apex Height conditions ρ * = 30, 80 and 100 

tvo/do Distribusi tekanan P* = P/(ρ.g.do) 

0,16 
 

 

 

 

 

 

 

1400 

 

 

1120  

 

840  

 
560 

 

 
280 

 

 

0 

0,2 
 

0,28 
 

0,37 
 

0,374 
 

0,375 
 

0,379 
 

0,383 
 

0,387 
 

0,391 
 

0,412  

0,618  

0,78  

 

0,948  

1,278  

4. Conclusions 

This study is a development of previous droplet phenomenon modeling using the Finite Volume 

Method - Front Tracking with an implicit scheme. The focus of this study is to determine the effect of 

surface tension involvement and variations in the density ratio on the measured variables, namely 

spreading factor, apex height, spreading velocity and pressure distribution in the droplet. Modeling 

with this method can track the droplet interface and the surrounding fluid well with a density ratio 

reaching ρ * = 100. The density ratio greatly affects the measured variables. The greater the value of 

the density ratio, the maximum diameter of the droplet during Spreading increases in line with the 

spreading factor and spreading velocity values. Conversely, the greater the value of the density ratio, 

the lower the apex height value. 
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