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The increasing demand for air travel requires the development of more accurate aircraft trajectory 

prediction methods to optimize airspace utilization and enhance safety. This paper presents a 

hybrid approach for single-flight-route trajectory prediction that employs the K-means clustering 

and Bidirectional Long Short-Term Memory (BiLSTM) networks. The primary objective is to 

develop a deep learning model that effectively predicts aircraft trajectories. Additionally, this 

research investigates the influence of trajectory clustering on prediction accuracy. To fulfill the 

objectives, a four-step methodology: data preprocessing, model construction, validation testing, and 

analysis is employed. Real-world historical flight data is used to train the BiLSTM model after being 

clustered with K-means. The model's performance is evaluated using randomized enroute flight 

data and various metrics like mean squared error and root mean squared error. This research is 

successful in accurately predicting the flight and the clustering process was proven to increase 

prediction accuracy by 15 percent in latitude, and 10 percent in longitude. 

Keywords: trajectory prediction; k-mean clustering; BiLSTM network 

 

1. Introduction 

The commercial aviation industry has witnessed significant growth since the late 1980s, 

becoming a preferred mode of long-distance travel for many. Factors contributing to this rise in 

popularity include convenience, comfort, safety, and the ability to traverse vast distances in a 

relatively short time frame. This trend is reflected in data from the International Air Transport 

Association (IATA), which indicates a steady increase in air passenger numbers. In 2019, airlines 

worldwide carried over 4.5 billion passengers, representing a remarkable 61% growth compared to a 

decade prior [1]. This statistic underscores the rapid expansion of the aviation sector. This surge in 

flight operations poses challenges for air traffic flow management, as crowded airspace can lead to 

delays, inefficiencies, and potential safety risks. 

To maintain safe, efficient, and predictable air travel, the need for trajectory pre-diction has 

become increasingly paramount. Creating an accurate prediction model will allow a more immediate 

adjustment to accommodate unforeseen variables and dynamic changes in flight path such as 

weather conditions, air traffic, and emergencies as they provide flight operators valuable insights to 

adapt to these conditions. 

Traditionally, trajectory prediction in aviation has relied on complex methods, including 

Kalman filters and sophisticated airspace and flight dynamic models. These approaches, while 
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effective, are often resource-intensive and require a deep under-standing of intricate aviation physics. 

In contrast, this research introduces a hybrid approach that employes the power of deep learning and 

data-driven techniques by combining trajectory clustering and Bidirectional Long Short-Term 

Memory (BiLSTM) modeling, offering a more straightforward yet highly accurate alternative. The 

proposed model and method serve as a proof of concept, demonstrating their potential to accurately 

predict other relevant flight characteristics or parameters in practical applications. 

2. Related Work 

Some related works have been reviewed and summarizes as follows.  Bianco and Bielli [2] 

introduce a method that incorporates 20 automated procedures into future air traffic control systems 

to enhance safety, capacity, and efficiency. The method explores functions like flow control, strategic 

flight control, and terminal area sequencing, alongside optimization models and solution algorithms. 

The paper also identifies research gaps and trends, outlining a hierarchical framework for 

decomposing air traffic control systems based on planning horizons and control functions.  [3] 

proposes a machine learning approach for trajectory prediction without explicit aircraft modeling. It 

leverages historical data to train a model (e.g., Generalized Linear Model) for supervised learning 

regression. The authors then utilize the model to predict key trajectory aspects, such as vertical climb 

speed and traffic flow, ultimately focusing on optimizing aircraft spacing for Continuous Descent 

Operations (CDO). Basora et.al [4] presents an improved clustering method (HDBSCAN) for 

analyzing air traffic flow patterns. HDBSCAN efficiently handles varying density clusters and 

requires minimal parameter tuning. The study utilizes Euclidean distance and Symmetrized 

Segment-Path Distance to cluster over 9,000 flights, revealing distinct traffic patterns. 

A tool for optimizing flight trajectories in Japan is proposed in [5]. This tool replicates onboard 

Flight Management System calculations and prioritizes fuel efficiency by optimizing cost indices, 

flight paths, and initial mass configurations. The goal is to improve air traffic efficiency through 

accurate trajectory prediction and advanced arrival time calculations. [6] proposed an LSTM-ELM 

hybrid method for air traffic delay prediction. This three-phase approach involves data 

preprocessing, a dual-sided LSTM for backpropagation with beta weight estimation, and ELM 

training. While effective for 15 and 30-minute delay prediction, the method's post-training modeling 

limits versatility. The authors recommend exploring online learning techniques like Reinforcement 

Learning for potentially better results. In [Wu, 2022], the authors address trajectory prediction 

challenges due to aircraft maneuver uncertainty. They propose a deep learning approach that 

combines clustering and spatiotemporal feature extraction (K-Medoids, CNN-BiLSTM with joint 

attention) using publicly available, large-scale ADS-B data. This method achieves superior prediction 

accuracy compared to traditional models (BP, LSTM, CNN-LSTM). 

While prior research has primarily focused on trajectory prediction, this work employs a 

machine learning approach using Bidirectional Long Short-Term Memory (BiLSTM) networks. To 

enhance prediction accuracy, we incorporate preprocessing step involving trajectory clustering to 

increase trajectory prediction. The flight  parameters employed in this research are consistent with 

those presented in [6]. 

3. Methodology 

This study aims to construct a deep learning model for predicting flight trajectories. Flight Data 

Monitoring (FDM) data of turbofan engine aircraft was obtained from NASA's DASHlink repository 

[NASA, DASHlink]. The data were converted to a usable format, and preprocessed for data quality 

and consistency. The dataset was subsequently filtered to encompass only Duluth to Minneapolis 

flights for spatiotemporal analysis by using time, latitude, and longitude parameters. For trajectory 

prediction, additional parameters such as altitude, heading, and groundspeed were incorporated. 
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Data preprocessing included cleaning, sorting, sampling rate adjustment, dimensionality reduction, 

and normalization. 

Flight data was clustered into distinct flight patterns using K-means clustering, with cluster 

numbers optimized through a combination of Elbow method, Silhouette score, and a heuristic 

approach. The resulting clusters were used to train six Bidirectional Long Short-Term Memory 

(BiLSTM) models, each capturing specific flight characteristics. The impact of clustering on trajectory 

prediction accuracy was assessed through a comparison with a model trained on unclustered data. 

Finally, the performance of the trained models in predicting flight trajectories was evaluated using 

multiple metrics. Figure 1 provides a visual representation of the methodology. 

 

 
 

Figure 1. Research Methodology 

4. Feature Selection and K-Means Clustering 

FDM data contains hundreds of flight parameters such as altitude, ground speed, latitude, 

longitude, etc. For the data at hand, the number of parameters stored in each file is 182 with different 

sampling rate. However, not all parameters are required for the current case. In order to select which 

parameters most relevant to the trajectory model prediction, feature selection procedure is need to be 

conducted. This step is a pivotal aspect in every machine learning problem including the case at hand. 

There are several methods to select feature most relevant to the output of the model, for example 

using correlation analysis or physic relation-based selection and some other methods. For the case at 

hand, manual selection is chosen which directly related to the spatiotemporal information. The 

parameters employed to train the model include time, latitude, longitude, altitude, groundspeed, and 

heading angle. 

Once the parameters selected, the flight data are further processed to cluster based on their 

similar patterns. The algorithm employed for this purpose is the K-Means algorithm. This algorithm 

operates by iteratively assigning data points to the nearest cluster centroid dan recalculating the 

centroid location based on the newly formed clusters. The centroid of points 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3),⋯ (𝑥𝑛 , 𝑦𝑛) is calculated based on Equation (1). 

 

(
𝑥1 + 𝑥2⋯𝑥𝑛

𝑛
,
𝑦1 + 𝑦2⋯𝑦𝑛

𝑛
) (1) 

 

K-Means algorithm is an unsupervised algorithm that still requires us to determine the number of 

clusters (or K value) that we want to group our data into. This can be done with techniques such as 

elbow method and silhouette score method. The research employs both method to determine the K 

value. 
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The implementation of the K-Means algorithm along with K = 6 reveals subtle patterns in same 

route flight data, enhancing prediction accuracy despite interpretation challenges. The result is 

depicted in Fig 2. 

 

 
(a) 

 
(b) 

Figure 2. Clustering Result and Respected Trajectory 

4. Trajectory Model Development 

3.1. Trajctory Model Training 

Six BiLSTM models will be trained, one for each cluster. However, to calculate the effect of 

clustering on the trajectory prediction model, one model will be trained using unclustered flight data. 

These clusters will be trained strictly using the data from their respective clusters. The model will 

have an 80/20 train-test split, leaving one flight data to be used for a validation test later on. The 

dataset used for training these models is almost raw, with only feature selection and sampling rate 

standardization performed to it to ensure the highest quality results. 

The input layer of our model encompasses neurons that capture various features of flight 

trajectories, including time, latitude, longitude, altitude, groundspeed, and heading. Each neuron in 

the input layer corresponds to a specific parameter, enabling the network to comprehensively process 

the multidimensional input vectors. As for the output layer, it is designed to generate the predicted 

flight trajectory. Since the goal is to predict the future positions of the aircraft, the output layer 

consists of two neurons representing latitude and longitude. These neurons output continuous 

values, representing the predicted latitude and longitude coordinates for the upcoming time steps. 

The structure of the network is depicted in Fig. 3. 

Each cluster has a unique model architecture. To prevent overfitting, we randomized training 

data and used L2 regularization. Models use PyTorch with 128 hidden layers, optimized through 

experimentation. Hyperparameters are tuned individually per cluster, considering data volume and 

complexity. Table 4.1 details each model's settings. 
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Figure 3. BiLSTM Model Structure 

 

Table 1. Model Architecture and Hyperparameters 

Model Epochs Hidden Layer Size Batch Size Sliding Window Learning Rate 

Cluster 0 50 145 150 25 0.000010 

Cluster 1 50 128 200 20 0.000050 

Cluster 2 50 156 82 35 0.000001 

Cluster 3 50 128 200 20 0.000100 

Cluster 4 30 128 256 20 0.000100 

Cluster 5 50 185 128 35 0.000005 

Unclustered 150 128 256 20 0.000100 

3.2. Model Evaluation 

Root means square error (RMSE), mean absolute error (MAE), and mean absolute percentage 

error (MAPE) are widely employed metrics for assessing the accuracy of predictive models, 

particularly in the domain of trajectory prediction. Each of the metrics is formulated as, 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)

2

𝑛

𝑖=1

 (2) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖|

𝑛

𝑖=1

 (3) 

𝑀𝐴𝑃𝐸 =
1

𝑛
√
1

𝑛
∑

𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖
𝑎𝑐𝑡𝑢𝑎𝑙𝑖

𝑛

𝑖=1

× 100% (4) 

 

These metrics are also employed in this research and their corresponding performance when 

applied to the data at hand are presented in Fig. 3. 
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Figure 3. Loss, RMSE, and MAE during Training for All Clusters 
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4. Results and Analysis 

Using the trained and complete model from each cluster, a validation test is done by selecting a 

predetermined point or sample from a random flight that is not used for model training from each 

cluster to predict the route of a flight until their destination. Across all clusters, the point selected will 

have roughly the same latitude at 45.78 degrees. This specific latitude is chosen because at this point 

the flight would have progressed enough for the model to have sufficient data to learn patterns to 

create accurate prediction, while still having multiple critical points where the decision making is 

essential to the model. Identical latitude value is also chosen to ensure the simulation’s validity 

between different cluster models. The yellow point is the sample input point, yellow line is the 

resulted predicted route from our model and the gray line is the original route from the sample flight 

data. 

 

 
 

Figure 5. Predicted Route for All Clusters 
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Table 2.  Evaluation Indicator of Each Cluster 

Evaluation Indicators 

ID 
Latitude Longitude 

MAE  RMSE  MAPE  MAE  RMSE  MAPE  

C0  0.00011 0.000225  0.014%  0.000159 0.00035  0.0098%  

C1  0.00074 0.001308  0.094%  0.000529  0.00088  0.0325%  

C2  0.00022 0.000366  0.028%  0.000317  0.00054  0.0195%  

C3  0.00001 0.000048  0.002%  0.000075  0.00017  0.0046%  

C4  0.00004 0.00009  0.005%  0.000180  0.00033  0.0111%  

C5 0.00154 0.002473 0.195% 0.001604 0.00247 0.0985% 

 

Table 3.  Unclastered Model Evaluation 

Evaluation Indicators 

ID 
Latitude Longitude 

MAE  RMSE  MAPE  MAE  RMSE  MAPE  

W/ Clustering  0.000106 0.000219  0.0136%  0.000229  0.000482  0.0141% 

No Clustering  0.000122  0.000248  0.0214%  0.000253  0.000588 0.0225% 

 

We will use the model that is trained using unclustered data and perform the same validation 

test as the models with the clustered data. The orange line is the unclustered model result, the yellow 

line is the clustered model result, and the gray line is the original flight data. 

 

Figure 6. Clustered vs Unclustered Result 

 

The model successfully predicted flight trajectories with minimal errors across six clusters. 

Predictions were accurate during en-route phases but showed differences in approach phases due to 

route complexity. Cluster 5 and 2 models strug-gled with detecting holding phases. Clustered models 

improved prediction accuracy by 15% for latitude and 10.5% for longitude compared to the 
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unclustered model. Despite a smaller dataset, clustered training led to better pattern learning and 

predictions. The model also successfully captures the specific patterns and trends that exist within 

some cluster, though not all. 

5. Conclusions 

A trajectory prediction model that is capable of accurately predicting aircraft trajectory was 

successfully developed using a hybrid method based on K-means clustering and BiLSTM. In this 

research, we identify six distinct trajectory clusters for the data at hand. For each cluster, a unique 

trajectory prediction model was trained and developed. These individual trajectory prediction 

models demonstrated the ability to predict flight paths with minimal errors. The accuracy of each 

predicted trajectory was measured using RMSE, MAE, and MAPE. Clustering process proves to 

positively influence the trajectory prediction model and is capable of producing more accurate 

predictions. The process increases prediction accuracy by 15% on latitude, and 10.5% on longitude. 
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